Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
2.
Dalton Trans ; 52(14): 4429-4441, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36916977

ABSTRACT

Six new pyrazolylamidino Cu(II) complexes are synthesized directly from the reactions of Cu(X)2 salts (X = ClO4-, BF4-, or Cl-) and pyrazole (pzH) in nitrile solution (RCN, R = Me or Et) at 298 K via the metal-mediated coupling of RCN with pzH: [Cu(HNC(R)pz)2(X)2] (X = ClO4- or BF4-, R = Me, 1 or 7 and Et, 2 or 8, respectively) and dichloro Cu(II) complexes [Cu2Cl2(µ-Cl)2(HNC(Me)pz)2] (3) and [CuCl2(HNC(Et)pz)] (4). Four more new complexes, [Cu2(µ-Cl)2(HNC(Me)pz)2(pzH)2][X]2 (X = ClO4-, 5 and BF4-, 9) and [Cu2(µ-Cl)2(HNC(Et)pz)2(pzH)2(X)2] (X = ClO4-, 6 and BF4-, 10), are obtained indirectly from the anion substitution reaction with Cl- ions in 1 and 7, and 2 and 8, respectively. All complexes are characterized by EA, FTIR, UV-vis and EPR spectroscopy and X-ray crystallographic analyses. HNC(Et)pz or pzH is unobserved in both the nitrile-exchange reaction of 2 to d6-1 and the anion-substitution reaction of 2 to d6-5 in the CD3CN solution. The 1H NMR results reveal that the pzH-RCN coupling is intramolecular and reversible on a Cu(II) center. The crystal structures of these complexes show diverse supramolecular assemblies through imino NH⋯anion hydrogen bonds and pyrazolylamidino pz-pz (π⋯π) and pz-Cu(II) (π⋯metal) interactions. EPR results suggest weak magnetic couplings between Cu(II) centers in the polynuclear Cu(II) complexes. The yield and rate of the formation of 1 are higher in the reaction of Cu(ClO4)2 with a 4-fold molar excess of pzH compared with a 2-fold excess, indicating that [Cu(pzH)4]2+ is the more active species for pzH-RCN coupling. The highest rate for the formation of 1 is achieved when [Cu(pzH)4(ClO4)2] is used in MeCN solution. Thus, a plausible synthetic path for synthesizing pyrazolylamidino Cu(II) complexes is established. An intermediate species, [Cu(HNC(Me)pz)2(pzH)2][ClO4]2 (1a), is proposed for the synthetic process based on spectroscopic studies and DFT calculations. The reaction of [Cu(pzH)4X2] (X = ClO4-, Cl-, NO3-, or BF4-) in MeCN solution suggests that the lability of coordinated anions upon nitrile substitution affects the rate of the formation of bis-pyrazolylamidino Cu(II) complexes.

3.
J Asthma Allergy ; 16: 135-147, 2023.
Article in English | MEDLINE | ID: mdl-36714050

ABSTRACT

Background: Uncontrolled asthma in adults leads to poor clinical outcome, while the clinical heterogeneity of phenotypes interferes the applicable genetic determinants. This study aimed to identify phenotypes and genetic impact on poorly-controlled asthma to optimize individualized treatment strategies. Methods: This propensity score-matched case-control study included 340 and 1020 asthmatics with poorly-controlled asthma and well-controlled asthma, respectively. Data were obtained from the 2008-2015 Taiwan Biobank Database and linked to the National Health Insurance Research Database. All asthmatics were aged ≥30 years, without cancer history, and each completed a questionnaire, physical examination, and genome-wide single nucleotide polymorphisms (SNPs). Multivariate adjusted odds ratios (ORs) for genetic risk scores were calculated using conditional logistic regression, stratified by age and sex. A model integrating obesity- and asthma-associated phenotypes and genotypes was applied for poorly-controlled asthma risk prediction. Results: General obesity with body mass index (BMI) ≥27 kg/m2 (OR:1.49, 95% confidence interval (CI) 1.09-2.03), central obesity with waist-to-height ratio (WHtR) ≥0.5 (OR:1.62, 95% CI 1.22-2.15), and parental history of asthma (OR:1.65, and 1.68; for BMI model and WHtR model, respectively) were significantly associated with poorly-controlled asthma in adults, and the combination effect of both obesity phenotypes was 1.66 (95% CI 1.17-2.35). A total of 16 obesity-associated SNPs and 9 asthma-associated SNPs were converted into genetic scores, and the aforementioned phenotypes were incorporated into the risk prediction model for poorly-controlled asthma, with an area under curve 0.72 in the receiver operating characteristic curve. The potential biological functions of genes are involved in immunity pathways. Conclusion: The prediction model integrating obesity-asthma phenotypes and genotypes for poorly-controlled asthma can facilitate the prediction of high-risk asthma and provide potential targets for novel treatment.

4.
J Minim Invasive Gynecol ; 29(8): 920-921, 2022 08.
Article in English | MEDLINE | ID: mdl-35413456
5.
ACS Appl Mater Interfaces ; 14(6): 7814-7825, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129350

ABSTRACT

Zinc ion batteries have been extensively studied with an aqueous electrolyte system. However, the batteries suffer from a limited potential window, gas evolution, cathode dissolution, and dendrite formation on the anode. Considering these limitations, we developed an alternative electrolyte system based on deep eutectic solvents (DESs) because of their low cost, high stability, biodegradability, and non-flammability, making them optimal candidates for sustainable batteries. The DES electrolyte enables reversible Zn plating/stripping and effectively suppresses zinc dendrite formation. Furthermore, in-depth characterizations reveal that the energy storage mechanism can be attributed to [ZnCl]+ ion intercalation and the intermediate complex ion plays a pivotal role in electrochemical reactions, which deliver a high reversible capacity of 310 mAh g-1 at 0.1 A g-1and long-term stability (167 mAh g-1 at a current density of 0.3 A g-1 after 300 cycles, Coulombic efficiency: ∼98%). Overall, this work represents our new finding in rechargeable batteries with the DES electrolyte.

6.
BMJ Open Respir Res ; 9(1)2022 12.
Article in English | MEDLINE | ID: mdl-36600406

ABSTRACT

BACKGROUND AND OBJECTIVE: Obesity and asthma impose a heavy health and economic burden on millions of people around the world. The complex interaction between genetic traits and phenotypes caused the mechanism between obesity and asthma is still vague. This study investigates the relationship among obesity-related polygenic risk score (PRS), obesity phenotypes and the risk of having asthma. METHODS: This is a matched case-control study, with 4 controls (8288 non-asthmatic) for each case (2072 asthmatic). Data were obtained from the 2008-2015 Taiwan Biobank Database and linked to the 2000-2016 National Health Insurance Research Database. All participants were ≥30 years old with no history of cancer and had a complete questionnaire, as well as physical examination, genome-wide single nucleotide polymorphisms and clinical diagnosis data. Environmental exposure, PM2.5, was also considered. Multivariate adjusted ORs and 95% CIs were calculated using conditional logistic regression stratified by age and sex. Mediation analysis was also assessed, using a generalised linear model. RESULTS: We found that the obese phenotype was associated with significantly increased odds of asthma by approximately 26%. Four obesity-related PRS, including body mass index (OR=1.07 (1.01-1.13)), waist circumference (OR=1.10 (1.04-1.17)), central obesity as defined by waist-to-height ratio (OR=1.09 (1.03-1.15)) and general-central obesity (OR=1.06 (1.00-1.12)), were associated with increased odds of asthma. Additional independent risk factors for asthma included lower educational level, family history of asthma, certain chronic diseases and increased PM2.5 exposure. Obesity-related PRS is an indirect risk factor for asthma, the link being fully mediated by the trait of obesity. CONCLUSIONS: Obese phenotypes and obesity-related PRS are independent risk factors for having asthma in adults in the Taiwan Biobank. Overall, genetic risk for obesity increases the risk of asthma by affecting the obese phenotype.


Subject(s)
Asthma , Obesity, Abdominal , Humans , Obesity, Abdominal/complications , Taiwan/epidemiology , Case-Control Studies , Biological Specimen Banks , Obesity/epidemiology , Obesity/genetics , Obesity/complications , Asthma/epidemiology , Asthma/genetics , Asthma/complications , Phenotype , Particulate Matter
7.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34769330

ABSTRACT

Giardia lamblia persists in a dormant state with a protective cyst wall for transmission. It is incompletely known how three cyst wall proteins (CWPs) are coordinately synthesized during encystation. Meiotic recombination is required for sexual reproduction in animals, fungi, and plants. It is initiated by formation of double-stranded breaks by a topoisomerase-like Spo11. It has been shown that exchange of genetic material in the fused nuclei occurs during Giardia encystation, suggesting parasexual recombination processes of this protozoan. Giardia possesses an evolutionarily conserved Spo11 with typical domains for cleavage reaction and an upregulated expression pattern during encystation. In this study, we asked whether Spo11 can activate encystation process, like other topoisomerases we previously characterized. We found that Spo11 was capable of binding to both single-stranded and double-stranded DNA in vitro and that it could also bind to the cwp promoters in vivo as accessed in chromatin immunoprecipitation assays. Spo11 interacted with WRKY and MYB2 (named from myeloblastosis), transcription factors that can activate cwp gene expression during encystation. Interestingly, overexpression of Spo11 resulted in increased expression of cwp1-3 and myb2 genes and cyst formation. Mutation of the Tyr residue for the active site or two conserved residues corresponding to key DNA-binding residues for Arabidopsis Spo11 reduced the levels of cwp1-3 and myb2 gene expression and cyst formation. Targeted disruption of spo11 gene with CRISPR/Cas9 system led to a significant decrease in cwp1-3 and myb2 gene expression and cyst number. Our results suggest that Spo11 acts as a positive regulator for Giardia differentiation into cyst.


Subject(s)
Cell Differentiation , Cysts/pathology , Endodeoxyribonucleases/metabolism , Gene Expression Regulation , Protozoan Proteins/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cysts/genetics , Cysts/metabolism , Endodeoxyribonucleases/genetics , Giardia lamblia , Promoter Regions, Genetic , Protozoan Proteins/genetics
8.
Appl Opt ; 60(22): F33-F38, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34612860

ABSTRACT

An analytical solution for the determination of both angle of incidence (AOI) and the complex refractive index from combined ellipsometric and reflectometric measurements at optically isotropic substrates is presented. Conventional ellipsometers usually measure flat surfaces because the curvatures of the surface alter the reflected or transmitted light, which causes experimental errors due to the deviation of the incident angle. However, in real industrial applications, the shapes of samples are usually curved or even free-form. In this case, the knowledge of the AOI is essential. The proposed method provides a simple way to measure the AOI and the complex refractive index of nonplanar samples without extra or complicated hardware.

9.
Liver Cancer ; 10(4): 346-359, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34414122

ABSTRACT

BACKGROUND: Reversal of CD8 T-cell exhaustion was considered a major antitumor mechanism of anti-programmed cell death-1 (PD-1)/ anti-programmed death ligand-1 (PD-L1)-based immune checkpoint inhibitor (ICI) therapy. OBJECTIVES: The aim of this study was to identify markers of T-cell exhaustion that is best associated with ICI treatment efficacy for advanced hepatocellular carcinoma (HCC). METHODS: Immune cell composition of archival tumor samples was analyzed by transcriptomic analysis and multiplex immunofluorescence staining. RESULTS: HCC patients with objective response after anti-PD-1/anti-PD-L1-based ICI therapy (n = 42) had higher expression of genes related to T-cell exhaustion. A 9-gene signature (LAG3, CD244, CCL5, CXCL9, CXCL13, MSR1, CSF3R, CYBB, and KLRK1) was defined, whose expression was higher in patients with response to ICI therapy, correlated with density of CD8+LAG3+ cells in tumor microenvironment, and independently predicted better progression-free and overall survival. This 9-gene signature had similar predictive values for patients who received single-agent or combination ICI therapy and was not associated with prognosis in HCC patients who received surgery, suggesting that it may outperform other T-cell signatures for predicting efficacy of ICI therapy for HCC. For HCC patients who underwent surgery for both the primary liver and metastatic lung tumors (n = 31), lung metastatic HCC was associated with a higher exhausted CD8 T-cell signature, consistent with prior observation that patients with lung metastatic HCC may have higher probability of response to ICI therapy. CONCLUSIONS: CD8 T-cell exhaustion in tumor microenvironment may predict better efficacy of ICI therapy for HCC.

10.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33753566

ABSTRACT

BACKGROUND: Regorafenib and other multikinase inhibitors may enhance antitumor efficacy of anti-program cell death-1 (anti-PD1) therapy in hepatocellular carcinoma (HCC). Its immunomodulatory effects, besides anti-angiogenesis, were not clearly defined. METHODS: In vivo antitumor efficacy was tested in multiple syngeneic liver cancer models. Murine bone marrow-derived macrophages (BMDMs) were tested in vitro for modulation of polarization by regorafenib and activation of cocultured T cells. Markers of M1/M2 polarization were measured by quantitative reverse transcription PCR (RT-PCR), arginase activity, flow cytometry, and ELISA. Knockdown of p38 kinase and downstream Creb1/Klf4 signaling on macrophage polarization were confirmed by using knockdown of the upstream MAPK14 kinase, chemical p38 kinase inhibitor, and chromatin immunoprecipitation. RESULTS: Regorafenib (5 mg/kg/day, corresponding to about half of human clinical dosage) inhibited tumor growth and angiogenesis in vivo similarly to DC-101 (anti-VEGFR2 antibody) but produced higher T cell activation and M1 macrophage polarization, increased the ratio of M1/M2 polarized BMDMs and proliferation/activation of cocultured T cells in vitro, indicating angiogenesis-independent immunomodulatory effects. Suppression of p38 kinase phosphorylation and downstream Creb1/Klf4 activity in BMDMs by regorafenib reversed M2 polarization. Regorafenib enhanced antitumor efficacy of adoptively transferred antigen-specific T cells. Synergistic antitumor efficacy between regorafenib and anti-PD1 was associated with multiple immune-related pathways in the tumor microenvironment. CONCLUSION: Regorafenib may enhance antitumor immunity through modulation of macrophage polarization, independent of its anti-angiogenic effects. Optimization of regorafenib dosage for rational design of combination therapy regimen may improve the therapeutic index in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cyclic AMP Response Element-Binding Protein/metabolism , Liver Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Tumor-Associated Macrophages/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Coculture Techniques , Kruppel-Like Factor 4/metabolism , Liver Neoplasms/enzymology , Liver Neoplasms/immunology , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/enzymology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Signal Transduction , Tumor Microenvironment , Tumor-Associated Macrophages/enzymology , Tumor-Associated Macrophages/immunology
11.
Commun Biol ; 4(1): 171, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547344

ABSTRACT

Recent studies have pointed out the essential role of genetic ancestry in population pharmacogenetics. In this study, we analyzed the whole-genome sequencing data from The 1000 Genomes Project (Phase 3) and the pharmacogenetic information from Drug Bank, PharmGKB, PharmaADME, and Biotransformation. Here we show that ancestry-informative markers are enriched in pharmacogenetic loci, suggesting that trans-ancestry differentiation must be carefully considered in population pharmacogenetics studies. Ancestry-informative pharmacogenetic loci are located in both protein-coding and non-protein-coding regions, illustrating that a whole-genome analysis is necessary for an unbiased examination over pharmacogenetic loci. Finally, those ancestry-informative pharmacogenetic loci that target multiple drugs are often a functional variant, which reflects their importance in biological functions and pathways. In summary, we develop an efficient algorithm for an ultrahigh-dimensional principal component analysis. We create genetic catalogs of ancestry-informative markers and genes. We explore pharmacogenetic patterns and establish a high-accuracy prediction panel of genetic ancestry. Moreover, we construct a genetic ancestry pharmacogenomic database Genetic Ancestry PhD ( http://hcyang.stat.sinica.edu.tw/databases/genetic_ancestry_phd/ ).


Subject(s)
Biotransformation/genetics , Pharmacogenetics , Racial Groups/genetics , Biomarkers, Pharmacological/analysis , Biomarkers, Pharmacological/metabolism , Databases, Genetic , Gene Frequency , Gene-Environment Interaction , Genetic Variation/physiology , Genome, Human/physiology , Homozygote , Humans , Inactivation, Metabolic/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Precision Medicine/methods , Precision Medicine/trends , Principal Component Analysis , Proteome/drug effects , Proteome/metabolism , Transcriptome/drug effects , Transcriptome/physiology
12.
Proc Natl Acad Sci U S A ; 117(48): 30679-30686, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184173

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID 19, continues to evolve since its first emergence in December 2019. Using the complete sequences of 1,932 SARS-CoV-2 genomes, various clustering analyses consistently identified six types of the strains. Independent of the dendrogram construction, 13 signature variations in the form of single nucleotide variations (SNVs) in protein coding regions and one SNV in the 5' untranslated region (UTR) were identified and provided a direct interpretation for the six types (types I to VI). The six types of the strains and their underlying signature SNVs were validated in two subsequent analyses of 6,228 and 38,248 SARS-CoV-2 genomes which became available later. To date, type VI, characterized by the four signature SNVs C241T (5'UTR), C3037T (nsp3 F924F), C14408T (nsp12 P4715L), and A23403G (Spike D614G), with strong allelic associations, has become the dominant type. Since C241T is in the 5' UTR with uncertain significance and the characteristics can be captured by the other three strongly associated SNVs, we focus on the other three. The increasing frequency of the type VI haplotype 3037T-14408T-23403G in the majority of the submitted samples in various countries suggests a possible fitness gain conferred by the type VI signature SNVs. The fact that strains missing one or two of these signature SNVs fail to persist implies possible interactions among these SNVs. Later SNVs such as G28881A, G28882A, and G28883C have emerged with strong allelic associations, forming new subtypes. This study suggests that SNVs may become an important consideration in SARS-CoV-2 classification and surveillance.


Subject(s)
Alleles , Genome, Viral , Genomics , SARS-CoV-2/genetics , Geography , Humans , Polymorphism, Single Nucleotide/genetics , Time Factors
13.
ACS Appl Mater Interfaces ; 12(24): 27064-27073, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32364367

ABSTRACT

Aluminum-sulfur batteries (ASBs) have attracted substantial interest due to their high theoretical specific energy density, low cost, and environmental friendliness, while the traditional sulfur cathode and ionic liquid have very fast capacity decay, limiting cycling performance because of the sluggishly electrochemical reaction and side reactions with the electrolyte. Herein, we demonstrate, for the first time, excellent rechargeable aluminum-selenium batteries (ASeBs) using a new deep eutectic solvent, thiourea-AlCl3, as an electrolyte and Se nanowires grown directly on a flexible carbon cloth substrate (Se NWs@CC) by a low-temperature selenization process as a cathode. Selenium (Se) is a chemical analogue of sulfur with higher electronic conductivity and lower ionization potential that can improve the battery kinetics on the sluggishly electrochemical reaction and the reduction of the polarization where the thiourea-AlCl3 electrolyte can stabilize the side reaction during the reversible conversion reaction of Al-Se alloying processes during the charge-discharge process, yielding a high specific capacity of 260 mAh g-1 at 50 mA g-1 and a long cycling life of 100 times with a high Coulombic efficiency of nearly 93% at 100 mA g-1. The working mechanism based on the reversible conversion reaction of the Al-Se alloying processes, confirmed by the ex situ Raman, XRD, and XPS measurements, was proposed. This work provides new insights into the development of rechargeable aluminum-chalcogenide (S, Se, and Te) batteries.

14.
Cancers (Basel) ; 11(11)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731753

ABSTRACT

Liver cancer is one of the dominant causes of cancer-related mortality, and the survival rate of liver cancer is among the lowest for all cancers. Immunotherapy for hepatocellular carcinoma (HCC) has yielded some encouraging results, but the percentage of patients responding to single-agent therapies remains low. Therefore, potential directions for improved immunotherapies include identifying new immune targets and checkpoints and customizing treatment procedures for individual patients. The development of combination therapies for HCC is also crucial and urgent and, thus, further studies are required. Mice have been utilized in immunotherapy research due to several advantages, for example, being low in cost, having high success rates for inducing tumor growth, and so on. Moreover, immune-competent mice are used in immunotherapy research to clarify the role that the immune system plays in cancer growth. In this review paper, the advantages and disadvantages of mouse models for immunotherapy, the equipment that are used for monitoring HCC, and the cell strains used for inducing HCC are reviewed.

15.
Liver Cancer ; 8(3): 155-171, 2019 May.
Article in English | MEDLINE | ID: mdl-31192153

ABSTRACT

BACKGROUND: Anti-programmed cell death-1(anti-PD1) treatment has shown promising antitumor efficacy in patients with advanced hepatocellular carcinoma (HCC). This study sought to explore the functional significance of programmed death ligand-1 (PD-L1) expression in tumor cells in the tumor microenvironment. METHODS: The mouse liver cancer cell line BNL-MEA was transfected with PD-L1 plasmids and stable clones expressing PD-L1 were selected. An orthotopic HCC model was generated by implanting the cells into the subcapsular space of BALB/c mice. Cell growth features were measured by proliferation assay, colony formation, flow cytometry (in vitro), ultrasonography, and animal survival (in vivo). The changes in T-cell function were examined by cytokine assay, expression of T-cell related genes, and flow cytometry. The efficacy of anti-PD1 therapy was compared between the parental and PD-L1-expressing tumors. RESULTS: PD-L1 expression did not affect growth characteristics of BNL-MEA cells but downregulated the expression of genes related to T-cell activation in the tumor microenvironment. Co-culture of PD-L1-expressing BNL-MEA cells with CD8+ T cells reduced T-cell proliferation and expression of cytokines IFNγ and TNFα. Tumors with PD-L1 expression showed better response to anti-PD1 therapy and depletion of CD8+ T cells abolished the antitumor effect. The difference in treatment response between parental and PD-L1-expressing tumors disappeared when a combination of anti-PD1 and sorafenib was given. CONCLUSIONS: PD-L1 expression in HCC cells may inhibit T-cell function in the liver tumor microenvironment. Anti-PD1 therapy appeared more effective in PD-L1-expressing than nonexpressing tumors, but the difference was diminished by the addition of sorafenib.

16.
J Exp Clin Cancer Res ; 38(1): 187, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31072371

ABSTRACT

BACKGROUND: Current prognostic tools and targeted therapeutic approaches have limited value for metastatic triple negative breast cancer (TNBC). Building upon current knowledge, we hypothesized that epoxyeicosatrienoic acids (EETs) and related CYP450 epoxygenases may have differential roles in breast cancer signaling, and better understanding of which may uncover potential directions for molecular stratification and personalized therapy for TNBC patients. METHODS: We analyzed the oxylipin metabolome of paired tumors and adjacent normal mammary tissues from patients with pathologically confirmed breast cancer (N = 62). We used multivariate statistical analysis to identify important metabolite contributors and to determine the predictive power of tumor tissue metabolite clustering. In vitro functional assays using a panel of breast cancer cell lines were carried out to further confirm the crucial roles of endogenous and exogenous EETs in the metastasis transformation of TNBC cells. Deregulation of associated downstream signaling networks associated with EETs/CYPs was established using transcriptomics datasets from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). Comparative TNBC proteomics using the same tissue specimens subjected to oxylipin metabolomics analysis was used as validation set. RESULTS: Metabolite-by-metabolite comparison, tumor immunoreactivity, and gene expression analyses showed that CYP epoxygenases and arachidonic acid-epoxygenation products, EET metabolites, are strongly associated with TNBC metastasis. Notably, all the 4 EET isomers (5,6-, 8,9-, 11,12-, and 14,15-EET) was observed to profoundly drive the metastasis transformation of mesenchymal-like TNBC cells among the TNBC (basal- and mesenchymal-like), HER2-overexpressing and luminal breast cancer cell lines examined. Our pathway analysis revealed that, in hormone-positive breast cancer subtype, CYP epoxygenase overexpression is more related to immune cell-associated signaling, while EET-mediated Myc, Ras, MAPK, EGFR, HIF-1α, and NOD1/2 signaling are the molecular vulnerabilities of metastatic CYP epoxygenase-overexpressing TNBC tumors. CONCLUSIONS: This study suggests that categorizing breast tumors according to their EET metabolite ratio classifiers and CYP epoxygenase profiles may be useful for prognostic and therapeutic assessment. Modulation of CYP epoxygenase and EET-mediated signaling networks may offer an effective approach for personalized treatment of breast cancer, and may be an effective intervention option for metastatic TNBC patients.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Eicosapentaenoic Acid/genetics , Metabolome/genetics , Oxylipins/metabolism , Triple Negative Breast Neoplasms/genetics , Arachidonic Acid/genetics , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/metabolism , Female , Humans , MCF-7 Cells , Middle Aged , Neoplasm Metastasis , Prognosis , Signal Transduction/genetics , Theranostic Nanomedicine , Triple Negative Breast Neoplasms/pathology
17.
Nanoscale ; 11(21): 10410-10419, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31112143

ABSTRACT

Utilization of light to boost the performance of gas sensors allows us to operate sensor devices at room temperature. Here, we, for the first time, demonstrated an indoor light-activated 3D cone-shaped MoS2 bilayer-based NO gas sensor with ppb-level detection operated at room-temperature. Large-area cone-shaped (CS)-MoS2 bilayers were grown by depositing 2 nm-thick MoO3 layers on a 2'' three-dimensional (3D) cone-patterned sapphire substrate (CPSS) followed by a sulfurization process via chemical vapor deposition. Because the exposed area of MoS2 bilayers is increased by 30%, the CS-MoS2 gas sensor (GS) demonstrated excellent performance with a response of ∼470% and a fast response time of ∼25 s after exposure to 1 ppm of NO gas illuminated by ultraviolet (UV) light with a wavelength of 365 nm. Such extraordinary performance at room temperature is attributed to the enhanced light absorption because of the light scattering effect caused by the 3D configuration and photo-desorption induced by UV illumination. For NO concentrations ranging from 2 ppm down to 0.06 ppm, the CS-MoS2 GS demonstrated a stable sensing behavior with a high response and fast response time (470% and 25 s at 2 ppm NO) because of the light absorption enhanced by the 3D structure and photo-desorption under constant UV illumination. The CS-MoS2 GS exhibits a high sensitivity (∼189.2 R% ppm-1), allowing the detection of NO gas at 0.06 ppm in 130 s. In addition, the 3D cone-shaped structure prolonged the presence of sulfur vapor around MoO3, allowing MoO3 to react with sulfur completely. Furthermore, the CS-MoS2 GS using an indoor lighting to detect NO gas at room temperature was demonstrated for the first time where the CS-MoS2 GS exhibits a stable cycling behavior with a high response (165% at 1 ppm NO) in 50 s; for concentration as low as ∼0.06 ppm, the response of ∼75% in 150 s can be achieved.

18.
Small ; 15(8): e1803529, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30663255

ABSTRACT

A facile approach for the synthesis of Au- and Pt-decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20-40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers-based photodetectors. Remarkably, by using Pt- or Au-decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2 -based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.

19.
Brief Bioinform ; 20(1): 1-14, 2019 01 18.
Article in English | MEDLINE | ID: mdl-28981573

ABSTRACT

Combining statistical significances (P-values) from a set of single-locus association tests in genome-wide association studies is a proof-of-principle method for identifying disease-associated genomic segments, functional genes and biological pathways. We review P-value combinations for genome-wide association studies and introduce an integrated analysis tool, Omnibus P-value Association Tests (OPATs), which provides popular analysis methods of P-value combinations. The software OPATs programmed in R and R graphical user interface features a user-friendly interface. In addition to analysis modules for data quality control and single-locus association tests, OPATs provides three types of set-based association test: window-, gene- and biopathway-based association tests. P-value combinations with or without threshold and rank truncation are provided. The significance of a set-based association test is evaluated by using resampling procedures. Performance of the set-based association tests in OPATs has been evaluated by simulation studies and real data analyses. These set-based association tests help boost the statistical power, alleviate the multiple-testing problem, reduce the impact of genetic heterogeneity, increase the replication efficiency of association tests and facilitate the interpretation of association signals by streamlining the testing procedures and integrating the genetic effects of multiple variants in genomic regions of biological relevance. In summary, P-value combinations facilitate the identification of marker sets associated with disease susceptibility and uncover missing heritability in association studies, thereby establishing a foundation for the genetic dissection of complex diseases and traits. OPATs provides an easy-to-use and statistically powerful analysis tool for P-value combinations. OPATs, examples, and user guide can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/genetics/association/OPATs.htm.


Subject(s)
Genome-Wide Association Study/statistics & numerical data , Software , Arthritis, Rheumatoid/genetics , Case-Control Studies , Computational Biology , Computer Simulation , Genetic Markers , Genetic Predisposition to Disease , Genome, Human , Humans , Models, Genetic , Models, Statistical , Multifactorial Inheritance , Polymorphism, Single Nucleotide
20.
Semin Liver Dis ; 38(4): 379-388, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30357775

ABSTRACT

Multikinase inhibitors with antiangiogenic properties used to be standard therapy for patients with advanced hepatocellular carcinoma (HCC). Recently, several antiangiogenic agents (lenvatinib, cabozantinib, and ramucirumab) have demonstrated antitumor activity for advanced HCC in randomized controlled trials. However, the landscape of drug development for HCC may change dramatically with the advent of immune checkpoint inhibitor therapy, particularly the anti-programmed cell death-1 (anti-PD1) agents. In addition, early-phase clinical trials of combination of anti-PD-1 and antiangiogenic agents have shown very promising anti-tumor activity in patients with advanced HCC. Therefore, the critical research questions at present are whether this combination strategy will be the next generation of standard therapy and which antiangiogenic agents will be the optimal partner for the combination. All of the 4 multikinase inhibitors for HCC (sorafenib, regorafenib, lenvatinib, and cabozantinib) have been reported to have immune modulatory effects. The authors systematically reviewed the pre-clinical evidence of their immune modulatory effects to explore whether these effects were mediated by angiogenesis inhibition or by other "off-target" effects on the tumor microenvironment. Studies of sorafenib comprised the majority (58 of the 71) of the research articles reviewed. Potentially beneficial effects on anti-tumor immunity may result from increased M1 polarization of macrophages and stimulation of CD8 T cell function. On the other hand, high dosage of the kinase inhibitors in pre-clinical models and hypoxia associated with angiogenesis may contribute to immune suppression in the tumor microenvironment. Sorafenib and other multikinase inhibitors may promote anti-tumor immunity through modulation of multiple immune cell types as well as the tumor microenvironment. The optimal immune modulatory dosage should be defined to facilitate design of future combination regimens.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Immunotherapy/methods , Liver Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/therapeutic use , Anilides/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/immunology , Clinical Trials as Topic , Humans , Liver Neoplasms/immunology , Phenylurea Compounds/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pyridines/therapeutic use , Quinolines/therapeutic use , Ramucirumab
SELECTION OF CITATIONS
SEARCH DETAIL
...